CONVEXITÉ Fonctions convexes
Article modifié le
L'étude des fonctions convexes a permis de fournir un cadre dans lequel peut se résoudre toute une classe de problèmes d'analyse fonctionnelle non linéaire ; les problèmes ainsi abordés sont des questions d'optimisation provenant de divers domaines : la mécanique, l'économie, les équations aux dérivées partielles, l'analyse numérique. Compte tenu de la difficulté d'aborder de manière un peu générale les problèmes non linéaires, c'est là un rôle très important qui a motivé le développement autonome de la théorie.
Les travaux de W. Fenchel, de T. Rockafellar, de J.-J. Moreau ont développé les outils de base de l'analyse convexe notamment la notion de fonctions convexes conjuguées et la notion de sous-différentiel qui sert de produit de remplacement pour les fonctions convexes non différentiables.
Nous renvoyons à l'article convexité - Ensembles convexes, pour tout ce qui concerne les résultats généraux .
Les fonctions convexes
Soit E un espace vectoriel sur R, C une partie convexe de E et f une fonction définie sur E à valeurs dans R− (c'est-à-dire prenant éventuellement les valeurs ± ∞). L'épigraphe de f, noté épi(f ), est l'ensemble des couples (x, a) de C × R tels que f (x) ≤ a. La fonction f sera dite convexe si son épigraphe est une partie convexe de E × R.
On obtient immédiatement une interprétation analytique de cette définition : La fonction f est convexe si et seulement si, pour tout réel λ de l'intervalle [0, 1], on a :


La possibilité pour la fonction f de prendre la valeur + ∞ permet de ne considérer que des fonctions convexes définies sur E tout entier ; en effet, si on prolonge la fonction f définie sur C en la fonction f̃ définie sur E en posant f̃ (x) = + ∞ si x ∉ C, les fonctions f et f̃ ont alors le même épigraphe et donc f est convexe si et seulement si f̃ est convexe. Désormais, nous ne considérerons donc que des fonctions définies sur E tout entier. Cela nous conduit à définir le domaine effectif de f, noté dom (f ) :

La valeur − ∞ peut se présenter dans certains cas particuliers ; nous ne l'éliminons pas a priori ; néanmoins, nous introduisons la terminologie suivante : La fonction convexe f est propre si son domaine effectif est non vide et si elle ne prend jamais la valeur − ∞ ; la restriction de f à dom (f ) est alors une fonction à valeurs dans R (cf. convexité - Ensembles convexes). Une fonction deux fois continûment différentiable sur un ouvert convexe C de Rn à valeurs réelles est convexe si et seulement si la matrice hessienne :

La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Robert ROLLAND : maître assistant à la faculté des sciences de Marseille-Luminy
Classification
Médias
Autres références
-
HILBERT ESPACE DE
- Écrit par Lucien CHAMBADAL et Jean-Louis OVAERT
- 3 232 mots
Théorème 8. Soit E un espace hermitien, F une partie convexe complète non vide de E, et x un élément de E. Il existe alors un élément z de F et un seul tel que : où : -
MINKOWSKI HERMANN (1864-1909)
- Écrit par Jean-Luc VERLEY
- 282 mots
Mathématicien allemand né en Russie, à Alexoten, et mort à Göttingen. Hermann Minkowski habita Königsberg dès sa plus tendre enfance, et il fit ses études universitaires à Königsberg et à Berlin. De 1887 à 1902, il enseigna successivement à l'université de Bonn et à l'université de Königsberg,...
-
OPTIMISATION & CONTRÔLE
- Écrit par Ivar EKELAND
- 5 100 mots
- 2 médias
...par contre, il en est tout autrement. La difficulté est que, pour rendre X compact, il faudra avoir recours à des topologies tellement faibles qu'elles ne laisseront plus à f aucune chance d'être continue. La convexité seule peut sauver la situation, et encore, dans certains espaces seulement.
Voir aussi