PARTICULES ÉLÉMENTAIRES
Comprendre la naissance de l'Univers
Comprendre de plus en plus finement la structure de la matière implique la connaissance de la physique à des énergies de plus en plus élevées (100 MeV à 10—15 m, 100 GeV à 10—18 m). Cela nous permet aussi de comprendre les premières fractions de seconde suivant la naissance de l'Univers. Si nous vivons dans un Univers en expansion, la densité et la température (énergie moyenne par particule) sont d'autant plus élevées que l'on essaie de remonter vers le passé. Après le big bang, pendant lequel l'Univers se serait formé il y a environ 15 milliards d'années, la température décroît comme l'inverse de la racine carrée du temps. À 10—10 seconde, elle correspond à une énergie de 100 GeV, typique de la physique des particules.
La température décroissant, les bosons W et Z se désintègrent sans pouvoir être recréés par collision de particules (quarks et leptons), qui n'ont plus l'énergie nécessaire pour permettre leur formation. Quand la température tombe à 200 MeV, le vide cesse d'être transparent à la couleur. Quarks, antiquarks et gluons deviennent confinés dans des hadrons. L'Univers a alors un peu moins d'une microseconde. Quand il a un dixième de seconde, la densité et la température tombent à un niveau tel que les neutrinos se dissocient du reste et s'échappent librement. Ils cessent alors d'assurer l'équilibre thermique entre protons et neutrons ce qui favorise les premiers, un peu plus légers, à mesure que la température tombe. La température vaut alors 3 MeV. Quand l'Univers a une seconde, la température est de 1 MeV, électrons et positons s'annihilent en grand nombre et il ne reste que le faible excédent (un milliardième) d'électrons présent au départ... Nous ne donnons ici que quelques étapes d'une histoire que la physique des particules permet de reconstituer.
Le nombre de familles de neutrinos (Nν = 3) qui a été mesuré est directement lié à la proportion d'hélium et d'hydrogène contenue dans l'Univers, une proportion que l'évolution stellaire a peu changé depuis la fin de la phase de fusion qui débute, lentement d'abord, à 1 s, pour s'emballer et s'achever à 200 s. On pense que l'Univers contient une masse cachée de l'ordre de six fois supérieure à celle qui est aujourd'hui reconnue. C'est en physique des particules qu'on cherche sa nature et sa raison d'être.
La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Maurice JACOB : physicien au Cern, Genève, membre de l'Académie des sciences de Suède, correspondant de l'Académie des sciences de France
- Bernard PIRE : directeur de recherche émérite au CNRS, centre de physique théorique de l'École polytechnique, Palaiseau
Classification
Médias
Autres références
-
ACCÉLÉRATEURS DE PARTICULES
- Écrit par Michel CROZON et Jean-Louis LACLARE
- 3 528 mots
- 3 médias
Les modèles et théories qui synthétisent notre compréhension actuelle de la matière et de ses constituants élémentaires – molécules, atomes, particules – ont été confrontés à une multitude d'observations expérimentales. Pour réaliser ces expériences, c'est-à-dire observer l'infiniment petit, on utilise...
-
HADRONS
- Écrit par Bernard PIRE
- 4 223 mots
- 2 médias
La famille des hadrons rassemble les nombreuses particules sensibles à l'interaction nucléaire forte, cette force extraordinairement intense qui assure la cohésion du noyau en confinant les nucléons – protons et neutrons – dans un tout petit volume, malgré la répulsion électrostatique entre les protons....
-
DÉTECTEURS DE PARTICULES
- Écrit par Pierre BAREYRE , Jean-Pierre BATON , Georges CHARPAK , Monique NEVEU et Bernard PIRE
- 10 978 mots
- 12 médias
L' histoire de la physique subatomique est intimement liée à l'évolution des détecteurs de particules. Ces appareils furent souvent inventés pour répondre à des exigences précises de la physique. Ils furent aussi, parfois, le fruit des retombées du progrès de la technologie. Les deux classes de phénomènes...
-
BOSONS ÉLÉMENTAIRES
- Écrit par Bernard PIRE
- 2 872 mots
Particules au comportement grégaire, les bosons élémentaires sont les véhicules privilégiés des interactions fondamentales en physique nucléaire. Contrairement à l’autre famille de particules – les fermions, comme l’électron ou les quarks –, les bosons ont un moment angulaire intrinsèque (spin) nul...
-
BOSONS ET FERMIONS
- Écrit par Bernard PIRE
- 1 709 mots
- 1 média
Classer les objets d’étude est une étape essentielle de la démarche scientifique, dans tous les domaines. Peu après la naissance de la physique moderne, il est apparu que le concept de spin permettait de distinguer deux classes d’objets quantiques : les bosons et les fermions. Rappelons que,...
-
ÉLECTRONS
- Écrit par Jean-Eudes AUGUSTIN et Bernard PIRE
- 6 657 mots
- 5 médias
-
NEUTRINOS
- Écrit par Bernard PIRE
- 4 031 mots
- 2 médias
-
QUARKS
- Écrit par Bernard PIRE
- 2 130 mots
- 1 média
Les quarks sont des particules élémentaires. Ils ont été imaginés en 1963 pour expliquer la multiplicité croissante des particules élémentaires et la régularité apparente du nouveau tableau des éléments découverts grâce aux expériences utilisant les grands accélérateurs et sont maintenant considérés...
-
ANDERSON CARL DAVID (1905-1991)
- Écrit par Bernard PIRE
- 554 mots
Le physicien américain Carl David Anderson est né à New York de parents suédois le 3 septembre 1905. Après des études au California Institute of Technology de Pasadena, il y fait toute sa carrière, jusqu'à sa retraite en 1978. Dans sa thèse de doctorat soutenue en 1930, sous la direction de Robert...
-
ANTIMATIÈRE
- Écrit par Bernard PIRE et Jean-Marc RICHARD
- 6 931 mots
- 4 médias
Les résultats établis historiquement d'abord pour l'électron sont en fait plus généraux.Chaque particule possède une antiparticule qui lui est associée. Elles ont les mêmes caractéristiques mécaniques, c'est-à-dire même masse et même moment cinétique intrinsèque, ou spin. Mais une particule et... -
ASPECT ALAIN (1947- )
- Écrit par Bernard PIRE
- 1 156 mots
- 1 média
Il choisit un sujet extrêmement risqué : éprouver les fondements de la mécanique quantique et éclairer le débat épistémologique entre Albert Einstein et Niels Bohr en étudiant le phénomène dit d’intrication d’une paire de particules. -
ASTROPARTICULES
- Écrit par Pierre BAREYRE
- 2 125 mots
- 1 média
Les neutrinos (ν), produits en grande abondance par des processus divers à des énergies qui s'étendent de 10—5 à 1015 électronvolts, peuplent l'Univers à raison d'environ 300 par centimètre cube. Sont-ils massifs ? Les mesures directes de leur masse, très difficiles, donnent des limites... - Afficher les 82 références