- 1. Vers la géométrie symplectique
- 2. Géométrie de Poisson
- 3. Le 2-vecteur associé à une structure de Poisson
- 4. Le théorème de décomposition locale d'Alan Weinstein
- 5. Le feuilletage symplectique
- 6. Algébroïdes de Lie
- 7. Le problème de réalisation symplectique
- 8. Étude locale
- 9. Structures de Poisson et quantification
- 10. Structures de Poisson spéciales
- 11. Mécanique de Nambu
- 12. Les structures de Nambu d'après Tahktajan
- 13. Appendice
- 14. Bibliographie
POISSON ET NAMBU STRUCTURES DE
Appendice
Pour les notions de base concernant les variétés différentiables, nous renvoyons à l'article variétés différentiables. Si x est un point de la variété différentiable M, on note TxM l'espace des vecteurs tangents à M au point x.
Un fibré vectoriel de rang p sur la variété M est la donnée d'une variété différentiable E et d'une application différentiable π : E → M tels que l'on ait un atlas (Ui, φi)i ∈ J de M et un atlas correspondant (π–1(Ui), Φi)i ∈ J tels que Φi(π–1(Ui)) = φi(Ui)×ℝp, les expressions locales de π soient les projections évidentes (x, y) ∈ φi(Ui)×ℝp ↦ x ∈ φi(Ui), et que les changements de cartes sur E correspondants aux changements ψij = φi ∘ φi-1 soient de la forme (x, y) ↦ (ψij(x), γij(x)(y)), de façon que, pour tout x, les fonctions y ↦ γij(x)(y) soient linéaires.
Alors chaque « fibre » Ex ≔ π–1(x) hérite d'une structure d'espace vectoriel de dimension p et E est leur réunion disjointe :
. Ainsi un fibré vectoriel de rang p doit être vu comme une réunion disjointe d'espaces vectoriels de dimension p paramétrés par M, le tout muni d'une bonne structure de variété.Le fibré tangent
est l'exemple basique de fibré vectoriel (de rang égal à la dimension de M) sur M.Si π : E → M et π' : F → M sont deux fibrés vectoriels sur M, toute application différentiable φ : E → F qui préserve les fibres et est linéaire en restriction à chaque fibre [φ(Ex) ⊂ Fx et φ|Ex : Ex → Fx est linéaire] est appelée un morphisme de fibrés.
Si E est un fibré vectoriel sur M, alors il est facile de voir que
et peuvent être munis, de façon naturelle, de structures de fibrés vectoriels sur M, pour tout entier q. Ainsi T∗M ≔ TM∗ est le « fibré cotangent » à M, c'est le fibré des 1-formes sur M. De son côté ⁁qTM est le fibré des « q-vecteurs » sur M et ⁁qT∗M est celui des q-formes.Une « section » du fibré vectoriel E (sur M) est une application différentiable s : M → E telle que π ∘ s = IdM. Une telle section associe à tout point x de M un point s(x) de la fibre Ex de façon différentiable. Ainsi un champ de vecteurs sur M est une section de TM, une 1-forme différentiable sur M est une section de T∗M, une q-forme (différentiable) est une section de ⁁qT∗M et un « q-vecteur » de M est une section de ⁁qTM, pour q > 1.
On note C∞(M) l'ensemble des applications indéfiniment différentiables sur M. À tout champ de vecteurs X sur M on associe l'application LX : C∞(M) → C∞(M) qui, à toute fonction f, associe LXf ≔ X (f) [en coordonnées, c'est
]. Ce genre d'application est caractérisé par le fait qu'elle est ℝ-linéaire et qu'elle vérifie l'identité de Jacobi (56) LX(fg) = (LXg)f + gLXf.En généralisant ce résultat on prouve que, chaque fois que l'on a une fonction q-multi-ℝ-linéaire alternée F : (C∞(M))q → C∞(M) vérifiant l'identité de Jacobi (57) F(f1, ..., fq–1, gh) = F(f1, ..., fq–1, g)h + gF(f1, ..., fq–1, h) pour toutes fonctions f1, ..., fq–1, g, h, alors il existe un q-vecteur Λ sur M avec (58) F(f1, ..., fq) = Λ( df1, ..., dfq). Remarquons bien que, comme une q-forme s'applique à un q-uplet de vecteurs, un q-vecteur s'applique à un q-uplet de formes.
Écritures locales
Dans une carte locale de M munie des coordonnées (x1, ..., xn), les q-vecteurs s'écrivent sous la forme (59)
, où les coefficients Ai1, ..., ip sont des fonctions (locales) différentiables, et on a (60) , où désigne le jacobien de (xI1, ..., xiq) ↦ (f1, ..., fq).Crochets de Schouten
Si X et Y sont deux champs de vecteurs sur la variété[...]
La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Jean Paul DUFOUR : professeur à l'université Montpellier-II (département de mathématique)
Classification
Médias