- 1. Principes optiques
- 2. Les diverses combinaisons objectives
- 3. Au-delà du plan focal
- 4. Géométrie et mécanique des instruments astronomiques
- 5. Vers de nouveaux instruments
- 6. Les grands télescopes optiques terrestres
- 7. De l'œil aux grands télescopes
- 8. Les nouvelles technologies : le N.T.T.
- 9. Les premiers télescopes géants : Keck et V.L.T.
- 10. Les autres géants
- 11. Une nécessaire collaboration internationale
- 12. Toujours plus grand
- 13. Bibliographie
TÉLESCOPES
Article modifié le
Une nécessaire collaboration internationale
Il faut noter que les bénéficiaires de ces nouveaux outils ne sont pas seulement ceux qui ont le plus investi en capital et en moyens humains, mais aussi ceux qui ont ouvert des sites d'observation uniques sur leur territoire. Ainsi le Chili, qui met à disposition les sites du Cerro Paranal pour le V.L.T. et du Cerro Pachón pour Gemini South (ainsi que celui de Las Campanas pour le télescope Magellan de 6,5 m), reçoit en retour pour ses astronomes plus de 10 p. 100 des nuits d'observation. Les astronomes chiliens se voient ainsi octroyer l'accès à l'équivalent de deux tiers d'un télescope de 8 mètres, ce qui donne un formidable élan à la recherche au Chili et stimule l'éducation scientifique. L'université d'Hawaii, qui gère le site du Mauna Kea, est elle aussi rémunérée par un temps garanti de 10 à 15 p. 100 sur chacun des télescopes installés sur son site, et se voit ainsi allouer l'équivalent de 50 p. 100 d'un télescope de 8 mètres.
La gestion opérationnelle de ces télescopes est lourde et complexe. Le traitement des demandes d'observation pour ne sélectionner que les meilleures est suivi de l'élaboration minutée de la séquence d'observation, exécutée par l'ordinateur de contrôle. La quantité de données générées par les instruments au foyer est simplement astronomique ! En une nuit d'observation sur un télescope du V.L.T., plus de 100 milliards d'octets d'information peuvent être enregistrés. Le traitement de ces données s'effectue en mode semi-automatique au travers de véritables « pipelines » conçus pour livrer à l'astronome des données prêtes pour l'analyse astrophysique.
La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Olivier LE FÈVRE : astronome au laboratoire d'astrophysique de Marseille
- Jean RÖSCH : astronome
- Encyclopædia Universalis : services rédactionnels de l'Encyclopædia Universalis
Classification
Médias
Autres références
-
ASTROMÉTRIE
- Écrit par Jean KOVALEVSKY
- 6 515 mots
- 9 médias
Deux types detélescopes sont actuellement utilisés pour l'astrométrie photographique. Ce sont d'abord les télescopes de Schmidt ayant un champ de 50 par 50 et dont la précision interne est de l'ordre de 0,15″ à 0,25″. Par ailleurs, des lunettes ou des télescopes à long foyer (de 12 à 18... -
ASTRONOMIE
- Écrit par James LEQUEUX
- 11 343 mots
- 20 médias
Il est quelque peu arbitraire de faire commencer avec le xxe siècle l'astronomie contemporaine et ses grands instruments. Les premiers grandstélescopes sont bien antérieurs, puisque ceux de William Herschel datent de la fin du xviiie siècle et que William Parsons (lord Rosse, 1800-1867) achève... -
BICEP (Background Imaging of Cosmic Extragalactic Polarization)
- Écrit par Bernard PIRE
- 716 mots
- 1 média
Le télescope B.I.C.E.P. (pour Background Imaging of CosmicExtragalacticPolarization, soit Imagerie de polarisation du fond cosmique extragalactique) est un instrument dédié à l’étude du rayonnement primordial. Il est installé sur le continent Antarctique et utilisé par des équipes de...
-
CASSEGRAIN NICOLAS (mort en 1712)
- Écrit par Bernard PIRE
- 209 mots
Physicien français, inventeur en 1672 du télescope qui porte son nom.
On connaît très peu de chose sur Nicolas Cassegrain, qui a été vraisemblablement professeur au collège de Chartres. La combinaison optique qu'il a mise au point est très souvent employée dans les télescopes modernes...
- Afficher les 33 références
Voir aussi
- POUVOIR DE RÉSOLUTION
- INDICE DE RÉFRACTION
- OPTIQUE ACTIVE, astronomie
- CHRÉTIEN HENRI (1879-1956)
- OBJECTIF, optique
- APLANÉTISME
- GAUSS APPROXIMATION DE
- FOCALE DISTANCE
- COMA, optique
- ASTIGMATISME
- ABERRATION CHROMATIQUE
- ABERRATION GÉOMÉTRIQUE
- LENTILLES, optique
- OPTIQUE INSTRUMENTALE
- GROSSISSEMENT, optique
- CHAMP, optique instrumentale
- INTERFÉROMÉTRIE
- ABERRATIONS, optique
- IMAGES OPTIQUES
- DIFFRACTION DE LA LUMIÈRE
- ANALYSE SPECTRALE
- ABERRATION SPHÉRIQUE
- PHOTOMÉTRIE CÉLESTE
- ASCENSION DROITE
- DÉCLINAISON, astronomie
- LUNETTE MÉRIDIENNE
- LUNETTES ASTRONOMIQUES
- RÉCEPTEUR, physique
- RÉFLEXION & RÉFRACTION DE LA LUMIÈRE
- TRIPLET, objectif
- OCULAIRE
- RAMSDEN OCULAIRE DE
- STIGMATISME
- MIROIR
- NTT (New Technology Telescope)
- HOBBY-EBERLY TELESCOPE
- GEMINI, télescopes
- LARGE BINOCULAR TELESCOPE
- CLAIRAUT DOUBLET DE
- ASTROGRAPHES
- CASSEGRAIN TÉLESCOPE
- CLARTÉ, optique instrumentale
- CAMÉRA ÉLECTRONIQUE
- CŒLOSTATS
- COUDÉ FOYER
- AIRY TACHE D'
- SPECTROGRAPHE
- SPHÉRIQUE MIROIR
- THÉODOLITE
- SIDÉROSTATS
- TOUR SOLAIRE
- OBSERVATOIRES ASTRONOMIQUES
- RADIOTÉLESCOPES
- PARABOLIQUE MIROIR
- SCHMIDT TÉLESCOPE DE
- RÉTICULE, optique
- MÉCANISMES
- HYPERBOLIQUE MIROIR
- PALOMAR OBSERVATOIRE DU MONT
- MONTURES ÉQUATORIALES
- MICROMÈTRE À FILS
- POLISSAGE
- DÉFORMATIONS, mécanique
- ÉMULSION, photographie
- CROWN
- FLINT
- COOPÉRATION INTERNATIONALE
- CCD (charge coupled device)
- POSITION, astronomie
- PLAN MÉRIDIEN
- ASTRONOMIE HISTOIRE DE L'
- INTERFÉROMÉTRIE OPTIQUE, astronomie
- VERRES OPTIQUES
- MOUVEMENT DIURNE
- TÉLESCOPE SPATIAL
- ESO (Observatoire européen austral)