THERMODYNAMIQUE Processus irréversibles non linéaires
Thermodynamique et biologie
Dans son livre intitulé L'Ordre biologique, A. Lwoff écrit : « Un certain aspect de l'ordre est l'arrangement déterminé présent dans la constitution existante des choses. L'ordre peut être considéré aussi comme une séquence, ou une succession, dans l'espace ou dans le temps. L'ordre biologique est tout cela, et plus spécialement une séquence dans l'espace et dans le temps. » On peut se demander comment cet ordre ainsi défini se situe par rapport aux grandes lois d'organisation de la physique et, en particulier, de la thermodynamique.
Celle-ci prévoit qu'un système isolé évolue dans le temps vers le désordre. En revanche, en biologie et en sociologie, l'idée d'évolution est associée à une croissance de l'organisation et à la formation de structures de plus en plus complexes. En conséquence, on a longtemps pensé que l'organisation biologique ne pouvait être décrite à partir des lois de la physique. Actuellement, nombre de biologistes considèrent qu'il suffit d'appliquer la thermodynamique à l'ensemble « être vivant plus environnement » pour lever cette difficulté. Cependant, cette interprétation est largement insuffisante. Elle introduit différemment la notion de « système ouvert » mais n'apporte rien de plus à celle de « l'être vivant ». Elle n'explique pas en particulier comment interviennent d'une part, le hasard et d'autre part, les lois déterministes dans la formation des structures biologiques. L'analyse du rôle de la non-linéarité en thermodynamique, exposée plus haut, et qui a conduit au concept de structure dissipative a permis de répondre à ces questions.
Ordre biologique et structures dissipatives
Les systèmes biologiques sont des systèmes ouverts échangeant de la matière et de l'énergie avec le monde extérieur. Ils se caractérisent par un ordre spatial et temporel tout comme celui des structures dissipatives définies plus haut. Il convient donc d'examiner dans quelle mesure celles-ci interviennent dans l'établissement de l'ordre biologique.
La question est relativement plus simple à traiter pour l'organisation temporelle, car l'évolution du système est alors régie par un nombre réduit d'équations différentielles ordinaires tandis que l'étude des structures spatiales ou spatio-temporelles requiert l'analyse plus complexe d'équations aux dérivées partielles.
Au point de vue temporel, les phénomènes d'auto-organisation les plus communs sont, soit l'apparition d'états stationnaires multiples, soit l'évolution vers un régime d'oscillations entretenues correspondant à un cycle limite autour d'un état stationnaire devenu instable à la suite d'une bifurcation. Les exemples biologiques de tels phénomènes sont nombreux, et certains sont brièvement détaillés ci-dessous.
S'il est vrai que les phénomènes périodiques sont connus en chimie non biologique, comme l'indique la réaction de Belousov-Zhabotinsky, il faut reconnaître qu'ils sont encore plus abondants en biologie. Ils interviennent à tous les niveaux de l'organisation biologique, avec des périodes allant de la seconde (système nerveux) à l'année (systèmes écologiques). Le fonctionnement périodique de certaines cellules nerveuses, lié à leur propriété d'excitabilité, est connu depuis longtemps. Le rythme cardiaque et le rythme respiratoire sont tous deux contrôlés par le système nerveux. Des oscillations d'une période de quelques minutes sont connues dans le métabolisme cellulaire. Elles sont dues à la régulation de l'activité de certaines enzymes. D'autres oscillations, d'une période de l'ordre de l'heure, affectent la synthèse de certaines protéines et résultent de la régulation [...]
La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Agnès BABLOYANTZ : chef de travaux associé à l'Université libre de Bruxelles .
- Paul GLANSDORFF : professeur émérite de la faculté des sciences à l'université de Bruxelles, président d'honneur de l'Institut international du froid, membre de l'Académie royale
- Albert GOLDBETER : chef de travaux à l'université libre de Bruxelles
- Grégoire NICOLIS : professeur à l'Université libre de Bruxelles
- Ilya PRIGOGINE
: directeur des Instituts internationaux de physique et de chimie, fondés par Ernest Solvay à Bruxelles,
Ashbel Smith regental professor , université du Texas à Austin, directeur du Ilya Prigogine Center of Studies in Statistical Mechanics and Complex Systems, université du Texas à Austin
Classification
Médias
Autres références
-
THERMODYNAMIQUE (notions de base)
- Écrit par Bernard DIU
- 6 036 mots
De nos jours, on peut définir la thermodynamique comme la science des propriétés et des processus qui mettent en jeu la température et la chaleur.
Le nom de « thermodynamique » associe les deux mots grecs thermon (chaleur) et dynamis (puissance). Le but premier de la discipline, explicitement...
-
BOLTZMANN LUDWIG (1844-1906)
- Écrit par Pierre COSTABEL
- 1 634 mots
- 1 média
À partir de ce deuxième principe, Loschmidt a présenté à Boltzmann une objection redoutable, souvent reprise depuis lors, et qui consiste à affirmer l'impossibilité de faire sortir des équations réversibles de la mécanique une interprétation des processus irréversibles de la thermodynamique. Boltzmann... -
CARNOT SADI (1796-1832)
- Écrit par Robert FOX
- 841 mots
- 1 média
Fils aîné de Lazare Carnot, « l'Organisateur de la Victoire », Nicolas Léonard Sadi Carnot est un des pionniers de la thermodynamique. Son unique publication, les Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance, ignorée de son temps...
-
CHALEUR
- Écrit par Paul GLANSDORFF
- 985 mots
La première tentative d'interprétation physique assimilait la chaleur à un fluide dit subtil et indestructible dénommé le calorique, répandu partout au sein de la matière. Son passage d'un corps à un autre était notamment responsable du refroidissement du premier et de l'échauffement du second....
-
CLAUSIUS RUDOLF (1822-1888)
- Écrit par Robert FOX
- 1 001 mots
Rudolf Julius Emanuel Clausius, l'un des plus grands physiciens du xixe siècle, est connu principalement pour sa contribution à l'étude de la thermodynamique. Le premier, ce savant allemand formula ce qu'on a coutume d'appeler le deuxième principe et proposa une définition claire de l'...
- Afficher les 39 références